
25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

1

Assessment of ITS Architectures
Manuel Fünfrocken1*, Andreas Otte1, Jonas Vogt1, Niclas Wolniak1, Horst Wieker1

1 htw saar, University of Applied Sciences, Saarbrücken, Germany,

Goebenstr. 40, 66117 Saarbrücken, +49 681 5867 668,
*manuel.fuenfrocken@htwsaar.de, Germany

Abstract: Worldwide intelligent transportation systems (ITS) are at the edge from research and development to

deployment and commercial operation. Japan has already introduced ITS technology in the market and the USA and

the European Union have elaborated planes for deployment. ITS in this context means communication and services

based on communication technology between vehicles and other traffic participants on one hand and traffic and road

infrastructure, vehicle manufacturer and other mobility service provider on the other hand. For a successful

introduction, a reliable and secure exchange of mobility related information is a key factor. To provide such an

exchange an overall architecture for ITS and for all participants und users is necessary. With the introduction in the

market, the assessment of an ITS architecture without an existing reference system arises. Because most assessment

method currently existing, measure how ‘good’ an architecture is in comparison to another architecture. In this paper,

we describe ways and approaches how existing methods can be extended and combined to provide means for the

assessment of ITS architectures in the pre-deployment phase. As a result, deploying parties should be enabled to assess

an architecture before introducing it to the public.

1. Introduction

Automated and connected driving functions are a

keystone for future mobility. Efficient electric driving is

important to reach the global environmental goals.

Multimodal mobility concepts with all kinds of transportation

systems (e.g. cars, bus, robot taxi, train, motorcycle, etc.) are

necessary to fulfil the mobility demand of the growing

number of people living on this planet, especially in big

megacities but also in the sparsely inhabited rural areas. All

those future scenarios have one thing in common: they will

only be possible through communication. Missing and non-

transparent communication structures and inconsistent

information quality complicate or even prevent the

introduction of new services and the partaking of new

stakeholders. An ITS architecture that connects those services,

communication networks, traffic infrastructure and the

mobility users has to provide an easy, reliable, saleable,

secure and privacy friendly environment. In this context such

an architecture is called cooperative intelligent transportation

system (C-ITS).

Many industrial companies and consortia (e.g.

classical vehicle manufacturers and suppliers, IT Companies

like Google or Apple but also new players like Tesla or Uber)

and a huge number of research projects around the globe have

worked and are still working on this topic and created a

multitude of ITS architectures.

The question arises what is the most suitable system

for deployment. Moreover, how can the quality of such an

architecture be measured and rated. Many assessment

solutions only cope with the comparison of different solutions;

however, for ITS no exiting currently in-use solutions exist.

Nonetheless, to compare developed architectures such a

solution would be necessary. In this paper, we describe

methods how such an assessment is possible without the need

of a system for comparison. For a full view on the architecture

a technical, an economic, and an organizational assessment is

necessary. We focus on the technical part of the assessment,

based on the experiences we gathered in different research

projects.

This paper is structured as follows: the next section

“Assessment Methodologies” gives an overview about

different available assessment methods. Based on those

methods two variants of our assessment approach in different

projects is presented in the section “Approach”. The paper

concludes with an outlook regarding the next steps.

2. Assessment Methodologies

A large number of assessment methods exist to verify

different models and architectures, which however are not

equally suitable to verify ITS communication architectures.

Especially in the field of research where sometimes no

comparable architectures exist, and complex requirement

structures and abstract concepts are in consideration

conventional assessment methods do not meet the

requirements of measuring, as their focus is mostly product

and business driven.

The following six methodologies form various fields

are very common and often used to assess software

architectures. Therefore, they shall be examined about their

suitability and applicability.

2.1. Cost–utility analysis (CUA)

In the CONVERGE research project a cost-utility

analysis, sub-analysis of the multiple-criteria decision

analysis (MCDA) has been used [1]. This is a comparably

simple qualitative approach to distinguish between two or

more decision alternatives. It is easy to calculate and well

suited for ‘soft criteria’. However, as it relies on the presence

of two or more alternatives, it is hardly useable as there are

currently no alternatives to the architecture deployed in the

ITS context. For CONVERGE two hypothetical architectures,

an ideal solution and a feasible optimum of the existing

architecture were defined for comparison.

25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

2

2.2. Field operational test support action (FESTA)

The FESTA methodology, as described in the FESTA-

Handbook [2], is widely used in common C-ITS projects.

However, it is intended for so-called field operational tests

(FOT). According to FOT-Net, a FOT is “A study undertaken

to evaluate a function, or functions, under normal operating

conditions in road traffic environments typically encountered

by the participants using study design so as to identify real-

world effects and benefits.” Therefore resulting in large-scale

user tests, intended to examine the behaviour of a system and

its impact under real and everyday conditions. As an

operational field test is a basic requirement of a FESTA

assessment it is not suitable for the assessment of an abstract

architecture, which is not tested in such a way. It is especially

worse, if no implementation of the architecture is present and

the assessment should be based only on an architectural

description.

2.3. Scenario-Based Architecture Analysis
(SAAM)

The scenario-based architecture analysis method

(SAAM) has been proposed by Kazman et al. [3] as early as

1996. It was developed to provide a “way to express and

analyse context-dependent quality attributes” [3] in software

architectures. The principle behind SAAM is that the quality

of an architecture can be assessed by evaluating how much

changes are needed to adapt the software to specific use cases.

For example, if easy portability is a relevant quality criterion

for an architecture it is evident to examine for a few examples,

how easy the architecture could be ported.

The basic process for a scenario-based architecture

analysis [3] is split into six steps. Step (1), Describe the

architecture, obtains a more or less formal description of the

architecture, where it is made sure that every participant

understands the architecture definition. In the next step, (2)

Develop scenarios, scenarios used to evaluate the

architecture are specified. Kazman et al. [3] recommend

using descriptions of one or two sentences each, briefly

describing a task or action, which the architecture should be

capable of performing. In step (3), Evaluate each scenario,

each scenario is assigned to one of two groups: direct or

indirect scenarios. Direct scenarios are scenarios, which can

be performed by the architecture without any changes. In

contrast to direct scenarios, performing indirect scenarios -

also described as change cases or growth cases – need

specific adjustment of the architecture. In addition, the

number of components, which should be modified, as well as

the expected effort should also be noted. In the fourth step, (4)

Reveal scenario interactions, the number of changes for

each component is identified. Step (5), Weight scenarios

and scenario interactions, provides a prioritization, by

weighting scenarios against each other. This depends highly

on the circumstances under which the SAAM is performed.

In the final step (6), Interpret results, the results are

interpreted in context of the environment in which the SAAM

was performed.

2.4. Architecture Trade-off Analysis Method

(ATAM)

The Architecture Trade-off Analysis Method (ATAM)

is the successor of SAAM, also developed by Kazman et al.

[4]. Its main goal is to choose a suitable architecture by

highlighting trade-offs.

ATAM defines nine steps [5], where in step (1)

Present the ATAM, the evaluation method is described to

the assembled participants. In the second step, (2) Present

business drivers, a project spokesperson (ideally the project

manager or system customer) describes what business goals

are motivating the development effort and hence what will be

the primary architectural drivers (e.g., high availability or

time to market or high security). In step (3) Present

architecture, an architect will describe the architecture,

focusing on how it addresses the business drivers presented

in step 2. Following this, step (4) Identify architectural

approaches, identifies new and existing architectural

approaches, led by the architect, but does not analyse them.

Before analyzation, step (5) Generate quality attribute

utility tree, examines quality factors and requirements that

comprise system "utility" (performance, availability, security,

modifiability, usability, etc.), specified down to the level of

scenarios, annotated with stimuli and responses, and

prioritizes them. The analyzation of the approaches is done in

step (6) Analyse architectural approaches. Based on the

high-priority factors identified in Step 5, the architectural

approaches that address those factors are investigated and

analysed here (for example, an architectural approach aimed

at meeting performance goals will be subjected to a

performance analysis). During this step, architectural risks,

sensitivity points, and trade-off points are identified. In step

(7), Brainstorm and prioritize scenarios, a larger set of

scenarios is elicited by the entire group of stakeholders. This

set of scenarios is prioritized via a voting process involving

the entire stakeholder group. In the eight step, (8) Analyse

architectural approaches, the activities of Step 6 are

reiterated, but the highly ranked scenarios from Step 7 are

used. Those scenarios are considered to be test cases to

confirm the analysis performed thus far. This analysis may

uncover additional architectural approaches, risks, sensitivity

points, and trade-off points, which are then documented. In

the final step, (9) Present results, the ATAM team presents

the findings to the assembled stakeholders. This is based on

the information collected in the ATAM (approaches,

scenarios, attribute-specific questions, the utility tree, risks,

non-risks, sensitivity points, trade-offs.

2.5. Architecture Level Modifiability Analysis
(ALMA)

Bengtsson et al. [6] created the Architecture Level

Modifiability Analysis (ALMA). It is intended to provide a

repeatable metric to assess the modifiability of software

architectures. It is based on the methods developed by

Lassing et al. [7] and Bengtson and Bosch. [8]

ALMA consists of five different steps. It is intended

to serve three different overall goals: prediction of future

maintenance cost, identification of system inflexibility and

comparison of two or more alternative architectures. In the

first step, (1) Goal setting, one of the three overall intended

goals is selected. In the second step, (2) Architecture

description, a more or less formal definition of the

architecture is created. ALMA does not specify a specific

25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

3

kind of architecture definition, but emphases, that the

description should provide information of the decomposition

of the system in components, the relationships between

components and the relationship to the system’s environment.

In the third step, (3) Change scenario elicitation, scenarios

to assess the architecture are created and elicited. This process

is similar to other scenario selection processes, e.g. for

requirement analysis. However, as to limit the number of

scenarios to investigate for ALMA, the scenarios are grouped

into so-called equivalence classes, so just one scenario from

each equivalence class needs to be considered. To further

reduce the number of scenarios, classification of change

categories is used. Here, the relevance classes, which are not

relevant to evaluation for the intended goal, are left out of the

analysis. Afterward follows step (4), Change scenario

evaluation. This is the main step of ALMA where an

architecture level impact analysis is performed. This analysis

itself consists of three steps: identification of affected

components, determination of effect on the components, and

determination of ripple effects. Those steps are performed

together by system architects, designers, and analysts, as

especially the last step, determination of ripple effects is hard

to do without access to actual source code. Therefore,

estimations need to be performed based on the knowledge and

experience of the partaking stakeholders. Finally, for step (5)

Interpretation, Bengtsson et al. cite Lindvall and Sandahl

[9], stating that impact analysis tends to predict only half of

the necessary changes, due to bad estimations of software

engineers and architects. This needs to be considered by the

analysts when interpreting the results.

2.6. Performance Assessment of Software
Architecture (PASA)

Williams and Smith have developed the Performance

Assessment of Software Architecture (PASA) method. [10]

As the methods described above, it is a scenario-based

process. However, the scenarios used in PASA are different

from those used in SAAM or ATAM. Whereas SAAM and

ATAM use scenarios which describe the contexts in which a

system is used, scenarios in PASA describing processing

steps for a particular use of the software. The type of

scenarios used in SAAM/ATAM are called performance

studies in PASA. In contrast to SAAM/ATAM, PASA is

more concerned with evaluating the performance aspect of an

architecture.

An assessment performed with PASA consists of the

steps described below. Usually, they are performed in the

order given, but iteration or adaptions to fit the context in

which they are performed are common. PASA starts with (1)

Process overview, where the process is described to all

partakers. In this step, the reasons for performing the process,

as well as a description of the process and the expected

outcome is presented. Then, in (2) Architecture overview,

the architecture is presented to the assessors. This is not done

by means of formal documents, but by an actual presentation

held by the developers of the architecture. Typically, the

assessors already have reviewed the available documentation,

so they can interact in a question-and-answer fashion with the

development team during this phase. This process is often

necessary, as most architecture descriptions are only

available in an informal way. Afterwards, step (3)

Identification of critical use cases is performed. A use cases

describes the behaviour of the system, as they are visible to

the end-user. Critical use-cases are those, who are required

for the system to work correctly. In addition, use cases with a

performance risk associated to them are also critical use cases.

A performance risk may be that the system will fail, if certain

performance requirements are not meet. Those use cases are

used as input for (4) Selection of key performance scenarios.

Each of the use cases identified in the previous process step

consist of several actions executed in sequence to fulfil the

use case. Key performance scenarios are those scenarios,

which are performed frequently, as they influence the overall

system performance the most. Additionally, some scenarios

might be included, which are not performed frequently, but

are have also critical performance requirements, like crash

recovery procedures. Scenarios are described as annotated

UML Sequence diagrams. [11, 12] In the next step, (5)

Identification of performance objectives, it is defined what

a ‘good’ and ‘bad’ system, or in the case of PASA, a ‘fast’

and ‘slow’ system is. This is necessary to be able to assess

something, especially abstract entities like software

architecture. Therefore, clear, quantitative, and measurable

objectives for each scenario are defined. As the architecture

is only seldom specified in detail assessors and developer

discuss in step (6) Architecture clarification and discussion

the key elements identified in the previous process steps

together. The goal is to understand component relations and

the impact on the performance of those. To analyse the

architecture in step (7) Architectural analysis, several

techniques may be used, like identification of software

architectural styles and patterns [13, 14] identification of

performance antipatterns [15], or performance modelling and

analysis [10]. “Antipatterns [15] are conceptually similar to

patterns [16] in that they document recurring solutions to

common design problems. They are known as antipatterns

because their use (or misuse) produces negative

consequences. Antipatterns document common mistakes

made during software development. They also document

solutions for these mistakes. Thus, antipatterns tell you what

to avoid and how to fix a problem when you find it.

Performance antipatterns document common performance

problems and how to fix them. [16] [17] They capture the

knowledge and experience of performance experts by

providing a conceptual framework that helps analysts to

identify performance problems and suggesting ways of

solving them. Antipatterns are refactored (restructured or

reorganized) to overcome their negative consequences. A

refactoring is a correctness-preserving transformation that

improves the quality of the software. For example, the

interaction between two components might be refactored to

improve performance by sending fewer messages with more

data per message. This transformation does not alter the

semantics of the application, but it may improve overall

performance. Refactoring may also be used to enhance other

quality attributes including reusability, modifiability, or

reliability.” [10] The next step is (8) Identification of

alternatives. If performance problems are found, alternatives

may be identified to circumvent those problems. This can be

done, e.g. by deviations from architectural style, alternative

interactions between components, or refactoring to remove an

antipattern. Williams et al. state, that “it is important that the

PASA client receive a document containing the mission,

25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

4

findings, specific steps to take, the priority of the steps, and

their relative importance” [10]. This is done in process step

(9) Presentation of results. The final step (10) is Economic

analysis. If the PASAM was successful, failures and

shortcomings in the architecture have been identified in the

design phase and could be removed by facilitating

alternatives. However, as this cannot be seen easily, it is

recommended to perform an analysis how much resources

have been spent on the PASAM and how much resources

would have been needed to fix those problems in a later

process step.

3. Approach

Based on the results of the evaluation of the various

methodologies described above, a mixed evaluation method

has been chosen for our research projects iKoPA [16] and C-

MobILE [17]. This method combines cost-utility analysis

with scenario-based evaluation methods. Those methods are

used for a functional assessment, which is enhanced by an

additional evaluation of the implementation based on FESTA

field test, as well as an ATAM analysis for a non-functional

assessment. The results of the both assessments are combined

by the use of cost utility analysis again.

The cost-utility analysis is used to evaluate

requirement fulfilment. It provides an easy way to see the

indication, if all requirements have been fulfilled. The

scenario-based architecture assessment will evaluate the

ability of the architecture to pass various, hypothetical

scenarios.

With those two sub-assessments, as can be seen in Fig.

1, the overall assessment can be calculated as the weighted

sum of overall requirement fulfilment and the overall

scenario fulfilment. This is formally defined as:

𝑭𝑨 = 𝑾𝑨𝑹
∗ 𝑭𝑹 + 𝑾𝑨𝑺

∗ 𝑭𝑺 (1)
With

𝟎. 𝟎 ≤ 𝑭𝑹 ≤ 𝟏. 𝟎, 𝑭𝑹 ∈ ℚ (2)

𝟎. 𝟎 ≤ 𝑭𝑺 ≤ 𝟏. 𝟎, 𝑭𝑺 ∈ ℚ (3)
Whereas the sum of the weights is equal to one:

𝑾𝑨𝑹
+ 𝑾𝑺𝑹

= 𝟏, 𝒘𝒊𝒕𝒉

𝑾𝑨𝑹
, 𝑾𝑺𝑹

∈ ℚ
(4)

Taken alone, those values are hardly useful without

further explanation. However, they may be used by future

initiatives who want to compare their architectures against

architectures already assessed. In the following sub sections,

the detailed calculation of the various fulfilment numbers is

shown.

3.1. Quantitative requirement fulfilment

The overall requirement fulfilment is calculated from

the fulfilment values of the various requirements, as shown in

Fig. 2.

The overall degree of fulfilment for the requirements

FR can be calculated as

𝑭𝑹 = ∑ 𝑾𝑹𝒌
∗ 𝑭𝑹𝒌

𝒏

𝒌=𝟎

 (5)

Where 𝑊𝑅𝑘
 is the relative weight of requirement k and

𝑭𝑹𝒌
 is the degree of fulfillment of requirement k. Under the

following two conditions,

First, that the sum of all weights is equal to one

∑ 𝑾𝑹𝒌

𝒏

𝒌=𝟎

= 𝑾𝑹𝑮
= 𝟏, 𝟎. 𝟎 ≤ 𝑾𝑹𝒌

≤ 𝟏. 𝟎, 𝑾𝑹𝒌
∈ ℚ

(6)

And second, that the fulfilment is measured as binary

value

𝑭𝑹𝒌
∈ {𝟎, 𝟏}, 𝑭𝑹𝒌

∈ ℕ, 𝟎

= 𝒏𝒐𝒕 𝒇𝒖𝒍𝒇𝒊𝒍𝒍𝒆𝒅; 𝟏 = 𝒇𝒖𝒍𝒇𝒊𝒍𝒍𝒆𝒅
(7)

FR will also be between zero and one, or more formally,

𝟎. 𝟎 ≤ 𝑭𝑹 ≤ 𝟏. 𝟎, 𝑭𝑹 ∈ ℚ (8)
The fulfilment 𝑭𝑹𝒌

of a specific requirement is

evaluated based on its `Means-of-Verification’. The means-

of-verification describe, how an assessor needs to verify, that

the requirement has been fulfilled. For most of the

requirements, this is done by performing an expert rating

based on the architecture.

3.2. Definition of Means-of-verification

As defined earlier, expert assessors need to rate

whether each individual requirement has been fulfilled by the

architecture or not. In order to perform this binary assessment,

Fig. 2. Requirement fulfilment

Fig. 1. Overview of methodology. (Exemplary values)

25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

5

we describe a clear process supporting the assessor in the

following.

The foundation for the assessment has been set by the

creator of each requirement. The crator has also provided a

means of verification (MoV) statement, which is stored in the

same database. The MoV statement shall be used by the

assessor to check the fulfilment of a requirement, as it

provides precise conditions of the specific requirement. .

Once the MoV is defined by the requirement author, a

reviewer checks the MoV, to make sure it is understandable

and plausible. If this is not the case, the reviewer writes a

comment on the requirement, thus starting a discussion with

the author. Once a consensus is reached, the requirement

MoV is marked as finished in a tracking sheet.

3.3. Requirement weighting

Not all requirements have the same importance with

respect to the project’s goals. As some requirements are more

important than others are, we propose four different weights,

as shown in Fig. 4, which are used to weight requirements in

relation to each other.

Fig. 4: Weight level and pivot requirements

Fig. 4 shows the four weight-level and the so called

pivot requirements. The pivot requirements representing

border/transition points between two weight-level and will be

defined globally in the assessment process. Therefore, a pivot

requirement can be taken as orientation to the assessor on

where to assign a specific requirement. Every requirement

can be compared in the matter of significance to the three

pivot requirements. For example, if an item is more important

than the pivot requirement 3 but less important than pivot 2,

it will be assigned to WEIGHT-3. The three pivot

requirements are chosen from the gathered requirement pool

in an assessment meeting.

The weight-level themselves refer to a numeric factor

between 0.5 and 3. This factor is used as a tool to describe

how much more important e.g. WEIGHT-1 is compared to

WEIGHT-4.

WEIGHT-1 shall be used for most significant

requirements that have to be fulfilled in any case. It refers to

the factor 3.0. WEIGHT-2 is assigned to the factor 1.5. It is

used for important requirements that can be neglected in a few

special cases but constrain the functionality if not fulfilled.

The weight-level WEIGHT-3 is neutral and have the factor

1.0. WEIGHT-4 is used for less important items, the factor

0.5 is chosen for this level.

3.4. Scenario-based architecture assessment

The scenario-based architecture assessment follows a

similar approach to the previous described quantitative

requirement fulfilment. Individual degrees of scenario

fulfilment are aggregated into an overall scenario fulfilment

degree, as shown in Fig. 3.

The overall fulfilment degree of the various scenarios

is summed up to an overall fulfilment degree as shown in Fig.

3.

The overall degree of fulfilment for the architecture

assessment 𝐹𝑆 can be calculated as

𝑭𝑺 = ∑ 𝑾𝑺𝒌
∗ 𝑭𝑺𝒌

𝒏

𝒌=𝟎

 (9)

where 𝑊𝑺𝒌
 is the relative weight of the scenario k and

𝐹𝑺𝒌
 is the degree of fulfillment of requirement k. The

following two conditions apply:

first, the sum of all weights 𝑊𝑺𝑮
 is equal to one

∑ 𝑾𝑺𝒌

𝒏

𝒌=𝟎

= 𝑾𝑺𝑮
= 𝟏, 𝟎. 𝟎 ≤ 𝑾𝑺𝒌

≤ 𝟏. 𝟎, 𝑾𝑺𝒌
∈ ℚ

(10)

and second, the fulfilment degree of each scenario 𝑭𝑺𝒌

is express as percent value

𝟎. 𝟎 ≤ 𝑭𝑺𝒌
≤ 𝟏. 𝟎, 𝑭𝑺𝒌

∈ ℚ (11)

Where a value of 1.0 means, that the architecture is

able to fully support the scenario, and a value of 0.0 means,

that the architecture cannot be used to fulfil the scenario at all.

Scenarios will be evaluated by their feasibility.

Therefore, five level of feasibility are defined and described

in Table 1. Each level is assigned to a numeric value, allowing

the calculation of a degree of fulfilment.

Fig. 3. Scenario-based architecture assessment

25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

6

Table 1 Feasibility level

Level Description Value

Feasible The scenario is already fully

supported without any adjustment

of the architecture.

1.0

Conditionally

feasible

The scenario is conditionally

feasible, if an interface and its

protocol has to be assimilated.

0.75

Adaptably

feasible

The scenario is adaptably feasible,

if a component needs to be

extended with an additional

interface to itself or another

component.

0.5

Hardly

feasible

The scenario is hardly feasible, if

a new component is needed to

realize it.

0.25

Not feasible The scenario is not feasible at all

without heavy changes like an

insertion of a new layer.

0.0

3.5. Scenario creation process

Known scenario-based architecture assessments like

SAAM as described above do not define how scenarios are

created. Therefore, the methodology defines a tool to

facilitate this process.

Each scenario shall describe a hypothetical apply or

use-case, which is described in a short text. Afterwards an

assessor needs to examine if a scenario can be handled by the

architecture. Such use-cases arises from a topic, e.g. security

or privacy and affects one or more components of the

architecture. Every project partner is assigned to a topic or

expertise and shall determine each component if there could

be a use-case that could be applied to the architecture, which

has not already been described as a requirement or a use-case

before.

3.6. Scenario Weighting

Every scenario needs to be weighted as well. A direct

comparison of two or more scenarios can succeed by

comparing the scenarios affiliation to one or more goals the

architecture is used to achieve. The weight levels introduced

in 3.3 can also be used for the scenario weighting.

4. Outlook

Our approach described above has been defined in two

different research projects, but has only partially been tried

yet.

The German project iKoPA [16] develops the basic

design for a system, which serves as an open integrated

platform for future intelligent transportation services. These

services for automated driving will be connected in an

innovative, future-proof, secure, privacy-friendly and

comprehensive way. The iKoPA project and the assessment

of its architecture will be finished end of 2018.

C-MobILE [17] aims to help local authorities in

Europe to deploy C-ITS services. The reference architecture

developed in this project will be assessed partially by the

approach present in this paper. As this project also contains a

field operational test in 2019/2020, the assessment can be

enhanced by measuring performed according to FESTA [2].

It would be interesting to compare the assessment

results achieved in those projects and see, if general rules for

assessment of C-ITS based architectures can be obtained

from those. For the future users of C-ITS architectures, it is

crucial to possess a possibility to assess architectures before

implementing them.

5. Acknowledgment

The results presented in this paper have been taken

from work done in the iKoPA and C-MobILE projects.

The project iKoPA is funded by the German Federal

Ministry of Education and Research. The results presented in

this paper were developed jointly by the iKoPA project

partners.

The project C-MobILE has received funding from the

European Union’s Horizon 2020 research and innovation

program under grant agreement No 723311.

6. References

[1] CONVERGE, “Deliverable D6 - Final Assessment,”

online, http://converge-online.de/doc/download/D6-

AP8-Final-Assessment.pdf, 2016.

[2] FOT-Net, “FESTA-Handbook - Version 6,” online,

http://fot-net.eu/wp-

content/uploads/sites/7/2017/01/FESTA-Handbook-

Version-6.pdf, 2016.

[3] R. Kazman, A. Gregory, L. Bass and P. Clements,

"Scenario-based analysis of software architecture,"

IEEE software, pp. 47-55, 1996.

[4] R. Kazman, M. Klein and P. Clements, “ATAM:

Method for architecture evaluation,” DTIC

Document, 2000.

[5] S. E. Institute, “Architecture Tradeoff Analysis

Method,” Carnegie Mellon Univerity, [Online].

Available:

http://www.sei.cmu.edu/architecture/tools/evaluate/a

tam.cfm. [Accessed 28 03 2017].

[6] P. Bengtsson, N. Lassing, J. Bosch and H. van Vliet,

“Architecture-level modifiability analysis

(ALMA),” Journal of Systems and Software, vol.

69, no. 1-2, pp. 129-147, 2004.

[7] N. Lassing, D. Rijsenbrij and H. van Vliet,

“Towards a broader view on software architecture

analysis of flexibility,” in IEEE Comput. Soc, 1999.

[8] J. Bosch and P. Bengtsson, “Architecture level

prediction of software maintenance,” in IEEE

Comput. Soc, 1999.

25th ITS World Congress, Copenhagen, Denmark, 17-21 September 2018

7

[9] M. Lindvall and K. Sandahl, “How well do

experienced software developers predict software

change?,” Journal of Systems and Software, vol. 43,

no. 1, pp. 19-27, 1998.

[10] L. G. Williams and C. U. Smith, “PASA-SM: a

method for the performance assessment of software

architectures,” in ACM Press, 2002.

[11] J. Rumbaugh, I. Jacobson and G. Booch, The

unified modeling language reference manual,

Boston: Addison-Wesley, 2005.

[12] K. Fakhroutdinov, “UML Diagrams,” [Online].

Available: http://www.uml-diagrams.org/sequence-

diagrams.html. [Accessed 28 03 2017].

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides,

Design patterns: elements of reusable object-

oriented software, Reading, Mass: Addison-Wesley,

1995.

[14] F. Buschmann, Pattern-oriented software

architecture: a system of patterns, Chichester:

Wiley, 1996.

[15] W. J. Brown, AntiPatterns: refactoring software,

architectures, and projects in crisis, New York:

Wiley, 1998.

[16] R. H. R. J. a. J. V. E. Gamma, Design Patterns:

Elements of Reusable Object-Oriented Software,

massachusetts: Addison-Wesley, 1995.

[17] C. U. S. a. L. G. Williams, Performance Solutions:

A Practical Guide to Creating Responsive, Scalable

Software, Reading, Massachusetts: Addison-

Wesley, 2002.

[18] C. U. S. a. L. G. Williams, “Software Performance

Antipatterns,” in Software performance antipatterns,

Ottawa, Canada, 2000.

[19] iKoPA, “iKoPA Project Website,” 03 01 2018.

[Online]. Available: https://ikopa.de. [Accessed 03

01 2018].

[20] C-MobILE, “Accelerating C-ITS Mobility

Innovation and depLoyment in Europe,” 2017.

[Online]. Available: http://c-mobile-project.eu.

[21] R. C. M. H. W. M. I. a. T. J. M. W. J. Brown,

AntiPatterns: Refactoring Software, Architectures,

and Projects in Crisis, New York: John Wiley and

Sons, Inc., 1998.

